Admissible tuple data tables

This table contains algebraic data for each inequivalent admissible tuple in dimensions 4–35, comprising 100 total tuples. This list is conjecturally complete for all Weyl-Heisenberg covariant SICs in these dimensions. Each admissible tuple is specified by a dimension $d$ and an integer binary quadratic form $Q$ as follows. First factorize $(d+1)(d-3)=s^2\Delta_0$ where $\Delta_0$ is a fundamental discriminant. Then $ (d,Q) $ gives an admissible tuple if $\mathrm{disc}(Q) = f^2\Delta_0$ where $f$ divides $s$. The other columns can be computed from these data, but they may be difficult to compute, for example requiring integer factoring or finding a fundamental unit. The column $\Delta_0$ contains the fundamental discriminant of $Q$ and $h$ is the order of the class group $\mathrm{Cl}(\mathcal{O}_f)$, given in the next two columns respectively. The Galois group $\mathrm{Gal}(E_t^{(2)}/H)$ of the field containing the overlaps over the class field $H$ of $K=\mathbb{Q}(\sqrt{\Delta_0})$ is given in the next column. As both the class group and the Galois group are finite and abelian, we give the canonical decomposition into cyclic groups $C_k$ of order $k$. For the special case that the tuple has so-called $F_a$ symmetry, we have not yet worked out the Galois groups, so we mark these entries as tbd. The column $L^n$ contains a generator $L$ of the stability group of $Q$ in $\mathrm{GL}_2(\mathbb{Z})$ and its order $n$ in $\mathrm{GL}_2(\mathbb{Z}/\bar{d})$; that is, treating $Q$ as a symmetric matrix we have $L^T Q L = \det(L) Q$ and $L^n = 1\ (\bmod\ \bar{d})$. If the tuple has antiunitary symmetry, we denote this with a Y in the a.u. column. Finally, $\ell$ is the length of the word expansion of $L^n$ using the Hirzebruch-Jung (negative regular) reduction into the standard ($S$ and $T$) generators of $\mathrm{SL}_2(\mathbb{Z})$. This is one measure of the complexity of constructing the actual fiducial vector for that input. The $Q$ in this list were selected among class representatives to minimize this complexity, although this choice is not generally unique. The data here are sufficient to compute a ghost fiducial in each class, but to fully specify a SIC, one must additionally choose a sign-switching Galois automorphism $\sqrt{\Delta_0}\to-\sqrt{\Delta_0}$ over an appropriate field extension of $K$.

$d$$\Delta_0$$f$$h$$\mathrm{Cl}(\mathcal{O}_f)$$\mathrm{Gal}(E/H)$$Q$$L^n$$\text{a.u.}$$\ell$
$4$$5$$1$$1$$ C_{1} $$C_{2}^{2}$$\langle1,-3,1\rangle$$\left(\begin{smallmatrix}2&-1\\1&-1\end{smallmatrix}\right)^{6}$$\text{Y}$$4$
$5$$12$$1$$1$$ C_{1} $$C_{8}$$\langle1,-4,1\rangle$$\left(\begin{smallmatrix}4&-1\\1&0\end{smallmatrix}\right)^{3}$$4$
$6$$21$$1$$1$$ C_{1} $$C_{2}\times{}C_{6}$$\langle1,-5,1\rangle$$\left(\begin{smallmatrix}5&-1\\1&0\end{smallmatrix}\right)^{3}$$4$
$7$$8$$1$$1$$ C_{1} $$C_{6}$$\langle2,-4,1\rangle$$\left(\begin{smallmatrix}3&-1\\2&-1\end{smallmatrix}\right)^{6}$$\text{Y}$$7$
$2$$1$$ C_{1} $$C_{2}\times{}C_{6}$$\langle1,-6,1\rangle$$\left(\begin{smallmatrix}6&-1\\1&0\end{smallmatrix}\right)^{3}$$4$
$8$$5$$1$$1$$ C_{1} $$C_{2}\times{}C_{4}$$\langle1,-3,1\rangle$$\left(\begin{smallmatrix}2&-1\\1&-1\end{smallmatrix}\right)^{12}$$\text{Y}$$7$
$3$$1$$ C_{1} $$C_{2}\times{}C_{4}^{2}$$\langle1,-7,1\rangle$$\left(\begin{smallmatrix}7&-1\\1&0\end{smallmatrix}\right)^{3}$$4$
$9$$60$$1$$2$$C_{2}$$C_{3}\times{}C_{6}$$\langle1,-8,1\rangle$$\left(\begin{smallmatrix}8&-1\\1&0\end{smallmatrix}\right)^{3}$$4$
$\langle5,-10,2\rangle$$\left(\begin{smallmatrix}9&-2\\5&-1\end{smallmatrix}\right)^{3}$$7$
$10$$77$$1$$1$$ C_{1} $$C_{2}\times{}C_{24}$$\langle1,-9,1\rangle$$\left(\begin{smallmatrix}9&-1\\1&0\end{smallmatrix}\right)^{3}$$4$
$11$$24$$1$$1$$ C_{1} $$C_{40}$$\langle3,-6,1\rangle$$\left(\begin{smallmatrix}11&-2\\6&-1\end{smallmatrix}\right)^{3}$$7$
$2$$2$$C_{2}$$C_{40}$$\langle1,-10,1\rangle$$\left(\begin{smallmatrix}10&-1\\1&0\end{smallmatrix}\right)^{3}$$4$
$\langle3,-12,4\rangle$$\left(\begin{smallmatrix}11&-4\\3&-1\end{smallmatrix}\right)^{3}$$7$
$12$$13$$1$$1$$ C_{1} $$C_{2}^{4}$$\langle3,-5,1\rangle$$\left(\begin{smallmatrix}4&-1\\3&-1\end{smallmatrix}\right)^{6}$$\text{Y}$$10$
$3$$1$$ C_{1} $$C_{2}^{3}\times{}C_{6}$$\langle1,-11,1\rangle$$\left(\begin{smallmatrix}11&-1\\1&0\end{smallmatrix}\right)^{3}$$4$
$13$$140$$1$$2$$C_{2}$$C_{4}\times{}C_{12}$$\langle1,-12,1\rangle$$\left(\begin{smallmatrix}12&-1\\1&0\end{smallmatrix}\right)^{3}$$4$
$\langle7,-14,2\rangle$$\left(\begin{smallmatrix}13&-2\\7&-1\end{smallmatrix}\right)^{3}$$7$
$14$$165$$1$$2$$C_{2}$$C_{2}\times{}C_{6}^{2}$$\langle1,-13,1\rangle$$\left(\begin{smallmatrix}13&-1\\1&0\end{smallmatrix}\right)^{3}$$4$
$\langle5,-15,3\rangle$$\left(\begin{smallmatrix}14&-3\\5&-1\end{smallmatrix}\right)^{3}$$7$
$15$$12$$1$$1$$ C_{1} $$C_{24}$$\langle1,-4,1\rangle$$\left(\begin{smallmatrix}4&-1\\1&0\end{smallmatrix}\right)^{6}$$7$
$2$$1$$ C_{1} $$C_{2}\times{}C_{24}$$\langle4,-8,1\rangle$$\left(\begin{smallmatrix}15&-2\\8&-1\end{smallmatrix}\right)^{3}$$7$
$4$$2$$C_{2}$$C_{2}\times{}C_{24}$$\langle1,-14,1\rangle$$\left(\begin{smallmatrix}14&-1\\1&0\end{smallmatrix}\right)^{3}$$4$
$\langle11,-18,3\rangle$$\left(\begin{smallmatrix}16&-3\\11&-2\end{smallmatrix}\right)^{3}$$10$
$16$$221$$1$$2$$C_{2}$$C_{2}\times{}C_{8}^{2}$$\langle1,-15,1\rangle$$\left(\begin{smallmatrix}15&-1\\1&0\end{smallmatrix}\right)^{3}$$4$
$\langle7,-19,5\rangle$$\left(\begin{smallmatrix}17&-5\\7&-2\end{smallmatrix}\right)^{3}$$10$
$17$$28$$1$$1$$ C_{1} $$C_{96}$$\langle2,-6,1\rangle$$\left(\begin{smallmatrix}17&-3\\6&-1\end{smallmatrix}\right)^{3}$$7$
$3$$2$$C_{2}$$C_{96}$$\langle1,-16,1\rangle$$\left(\begin{smallmatrix}16&-1\\1&0\end{smallmatrix}\right)^{3}$$4$
$\langle9,-18,2\rangle$$\left(\begin{smallmatrix}17&-2\\9&-1\end{smallmatrix}\right)^{3}$$7$
$18$$285$$1$$2$$C_{2}$$C_{3}\times{}C_{6}^{2}$$\langle1,-17,1\rangle$$\left(\begin{smallmatrix}17&-1\\1&0\end{smallmatrix}\right)^{3}$$4$
$\langle13,-21,3\rangle$$\left(\begin{smallmatrix}19&-3\\13&-2\end{smallmatrix}\right)^{3}$$10$
$19$$5$$1$$1$$ C_{1} $$C_{18}$$\langle1,-3,1\rangle$$\left(\begin{smallmatrix}2&-1\\1&-1\end{smallmatrix}\right)^{18}$$\text{Y}$$10$
$2$$1$$ C_{1} $$C_{3}\times{}C_{18}$$\langle4,-6,1\rangle$$\left(\begin{smallmatrix}5&-1\\4&-1\end{smallmatrix}\right)^{6}$$\text{Y}$$13$
$4$$1$$ C_{1} $$C_{6}\times{}C_{18}$$\langle5,-10,1\rangle$$\left(\begin{smallmatrix}19&-2\\10&-1\end{smallmatrix}\right)^{3}$$7$
$8$$2$$C_{2}$$C_{6}\times{}C_{18}$$\langle1,-18,1\rangle$$\left(\begin{smallmatrix}18&-1\\1&0\end{smallmatrix}\right)^{3}$$4$
$\langle5,-20,4\rangle$$\left(\begin{smallmatrix}19&-4\\5&-1\end{smallmatrix}\right)^{3}$$7$
$20$$357$$1$$2$$C_{2}$$C_{2}^{3}\times{}C_{24}$$\langle1,-19,1\rangle$$\left(\begin{smallmatrix}19&-1\\1&0\end{smallmatrix}\right)^{3}$$4$
$\langle7,-21,3\rangle$$\left(\begin{smallmatrix}20&-3\\7&-1\end{smallmatrix}\right)^{3}$$7$
$21$$44$$1$$1$$ C_{1} $$C_{2}^{2}\times{}C_{24}$$\langle5,-8,1\rangle$$\left(\begin{smallmatrix}22&-3\\15&-2\end{smallmatrix}\right)^{3}$$10$
$3$$4$$C_{4}$$C_{2}\times{}C_{6}^{2}$$\langle1,-20,1\rangle$$\left(\begin{smallmatrix}20&-1\\1&0\end{smallmatrix}\right)^{3}$$4$
$\langle5,-24,9\rangle$$\left(\begin{smallmatrix}22&-9\\5&-2\end{smallmatrix}\right)^{3}$$10$
$\langle11,-22,2\rangle$$\left(\begin{smallmatrix}21&-2\\11&-1\end{smallmatrix}\right)^{3}$$7$
$\langle9,-24,5\rangle$$\left(\begin{smallmatrix}22&-5\\9&-2\end{smallmatrix}\right)^{3}$$10$
$22$$437$$1$$1$$ C_{1} $$C_{2}\times{}C_{120}$$\langle1,-21,1\rangle$$\left(\begin{smallmatrix}21&-1\\1&0\end{smallmatrix}\right)^{3}$$4$
$23$$120$$1$$2$$C_{2}$$C_{176}$$\langle6,-12,1\rangle$$\left(\begin{smallmatrix}23&-2\\12&-1\end{smallmatrix}\right)^{3}$$7$
$\langle3,-12,2\rangle$$\left(\begin{smallmatrix}23&-4\\6&-1\end{smallmatrix}\right)^{3}$$7$
$2$$4$$C_{2}^{2}$$C_{176}$$\langle1,-22,1\rangle$$\left(\begin{smallmatrix}22&-1\\1&0\end{smallmatrix}\right)^{3}$$4$
$\langle19,-28,4\rangle$$\left(\begin{smallmatrix}25&-4\\19&-3\end{smallmatrix}\right)^{3}$$13$
$\langle8,-24,3\rangle$$\left(\begin{smallmatrix}23&-3\\8&-1\end{smallmatrix}\right)^{3}$$7$
$\langle7,-26,7\rangle$$\left(\begin{smallmatrix}24&-7\\7&-2\end{smallmatrix}\right)^{3}$$10$
$24$$21$$1$$1$$ C_{1} $$C_{2}\times{}C_{4}\times{}C_{12}$$\langle1,-5,1\rangle$$\left(\begin{smallmatrix}5&-1\\1&0\end{smallmatrix}\right)^{6}$$7$
$5$$2$$C_{2}$$C_{2}^{2}\times{}C_{4}\times{}C_{12}$$\langle1,-23,1\rangle$$\left(\begin{smallmatrix}23&-1\\1&0\end{smallmatrix}\right)^{3}$$4$
$\langle17,-27,3\rangle$$\left(\begin{smallmatrix}25&-3\\17&-2\end{smallmatrix}\right)^{3}$$10$
$25$$572$$1$$2$$C_{2}$$C_{5}\times{}C_{40}$$\langle1,-24,1\rangle$$\left(\begin{smallmatrix}24&-1\\1&0\end{smallmatrix}\right)^{3}$$4$
$\langle13,-26,2\rangle$$\left(\begin{smallmatrix}25&-2\\13&-1\end{smallmatrix}\right)^{3}$$7$
$26$$69$$1$$1$$ C_{1} $$C_{2}\times{}C_{12}^{2}$$\langle3,-9,1\rangle$$\left(\begin{smallmatrix}26&-3\\9&-1\end{smallmatrix}\right)^{3}$$7$
$3$$3$$C_{3}$$C_{2}\times{}C_{12}^{2}$$\langle1,-25,1\rangle$$\left(\begin{smallmatrix}25&-1\\1&0\end{smallmatrix}\right)^{3}$$4$
$\langle11,-29,5\rangle$$\left(\begin{smallmatrix}27&-5\\11&-2\end{smallmatrix}\right)^{3}$$10$
$\langle5,-29,11\rangle$$\left(\begin{smallmatrix}27&-11\\5&-2\end{smallmatrix}\right)^{3}$$10$
$27$$168$$1$$2$$C_{2}$$C_{9}\times{}C_{18}$$\langle7,-14,1\rangle$$\left(\begin{smallmatrix}27&-2\\14&-1\end{smallmatrix}\right)^{3}$$7$
$\langle11,-16,2\rangle$$\left(\begin{smallmatrix}29&-4\\22&-3\end{smallmatrix}\right)^{3}$$13$
$2$$4$$C_{2}^{2}$$C_{9}\times{}C_{18}$$\langle1,-26,1\rangle$$\left(\begin{smallmatrix}26&-1\\1&0\end{smallmatrix}\right)^{3}$$4$
$\langle4,-28,7\rangle$$\left(\begin{smallmatrix}27&-7\\4&-1\end{smallmatrix}\right)^{3}$$7$
$\langle19,-30,3\rangle$$\left(\begin{smallmatrix}28&-3\\19&-2\end{smallmatrix}\right)^{3}$$10$
$\langle11,-32,8\rangle$$\left(\begin{smallmatrix}29&-8\\11&-3\end{smallmatrix}\right)^{3}$$10$
$28$$29$$1$$1$$ C_{1} $$C_{2}^{2}\times{}C_{6}^{2}$$\langle5,-7,1\rangle$$\left(\begin{smallmatrix}6&-1\\5&-1\end{smallmatrix}\right)^{6}$$\text{Y}$$16$
$5$$2$$C_{2}$$C_{2}^{3}\times{}C_{6}^{2}$$\langle1,-27,1\rangle$$\left(\begin{smallmatrix}27&-1\\1&0\end{smallmatrix}\right)^{3}$$4$
$\langle13,-33,7\rangle$$\left(\begin{smallmatrix}30&-7\\13&-3\end{smallmatrix}\right)^{3}$$13$
$29$$780$$1$$4$$C_{2}^{2}$$C_{280}$$\langle1,-28,1\rangle$$\left(\begin{smallmatrix}28&-1\\1&0\end{smallmatrix}\right)^{3}$$4$
$\langle15,-30,2\rangle$$\left(\begin{smallmatrix}29&-2\\15&-1\end{smallmatrix}\right)^{3}$$7$
$\langle10,-30,3\rangle$$\left(\begin{smallmatrix}29&-3\\10&-1\end{smallmatrix}\right)^{3}$$7$
$\langle6,-30,5\rangle$$\left(\begin{smallmatrix}29&-5\\6&-1\end{smallmatrix}\right)^{3}$$7$
$30$$93$$1$$1$$ C_{1} $$C_{2}\times{}C_{6}\times{}C_{24}$$\langle7,-11,1\rangle$$\left(\begin{smallmatrix}31&-3\\21&-2\end{smallmatrix}\right)^{3}$$10$
$3$$3$$C_{3}$$C_{2}\times{}C_{6}\times{}C_{24}$$\langle1,-29,1\rangle$$\left(\begin{smallmatrix}29&-1\\1&0\end{smallmatrix}\right)^{3}$$4$
$\langle9,-33,7\rangle$$\left(\begin{smallmatrix}31&-7\\9&-2\end{smallmatrix}\right)^{3}$$10$
$\langle7,-33,9\rangle$$\left(\begin{smallmatrix}31&-9\\7&-2\end{smallmatrix}\right)^{3}$$10$
$31$$56$$1$$1$$ C_{1} $$C_{10}\times{}C_{30}$$\langle2,-8,1\rangle$$\left(\begin{smallmatrix}31&-4\\8&-1\end{smallmatrix}\right)^{3}$$7$
$2$$2$$C_{2}$$C_{10}\times{}C_{30}$$\langle8,-16,1\rangle$$\left(\begin{smallmatrix}31&-2\\16&-1\end{smallmatrix}\right)^{3}$$7$
$\langle5,-18,5\rangle$$\left(\begin{smallmatrix}33&-10\\10&-3\end{smallmatrix}\right)^{3}$$13$
$4$$4$$C_{4}$$C_{10}\times{}C_{30}$$\langle1,-30,1\rangle$$\left(\begin{smallmatrix}30&-1\\1&0\end{smallmatrix}\right)^{3}$$4$
$\langle13,-34,5\rangle$$\left(\begin{smallmatrix}32&-5\\13&-2\end{smallmatrix}\right)^{3}$$10$
$\langle25,-36,4\rangle$$\left(\begin{smallmatrix}33&-4\\25&-3\end{smallmatrix}\right)^{3}$$13$
$\langle5,-34,13\rangle$$\left(\begin{smallmatrix}32&-13\\5&-2\end{smallmatrix}\right)^{3}$$10$
$32$$957$$1$$2$$C_{2}$$C_{2}\times{}C_{16}^{2}$$\langle1,-31,1\rangle$$\left(\begin{smallmatrix}31&-1\\1&0\end{smallmatrix}\right)^{3}$$4$
$\langle11,-33,3\rangle$$\left(\begin{smallmatrix}32&-3\\11&-1\end{smallmatrix}\right)^{3}$$7$
$33$$1020$$1$$4$$C_{2}^{2}$$C_{2}\times{}C_{120}$$\langle1,-32,1\rangle$$\left(\begin{smallmatrix}32&-1\\1&0\end{smallmatrix}\right)^{3}$$4$
$\langle17,-34,2\rangle$$\left(\begin{smallmatrix}33&-2\\17&-1\end{smallmatrix}\right)^{3}$$7$
$\langle23,-36,3\rangle$$\left(\begin{smallmatrix}34&-3\\23&-2\end{smallmatrix}\right)^{3}$$10$
$\langle29,-40,5\rangle$$\left(\begin{smallmatrix}36&-5\\29&-4\end{smallmatrix}\right)^{3}$$16$
$34$$1085$$1$$2$$C_{2}$$C_{2}\times{}C_{288}$$\langle1,-33,1\rangle$$\left(\begin{smallmatrix}33&-1\\1&0\end{smallmatrix}\right)^{3}$$4$
$\langle7,-35,5\rangle$$\left(\begin{smallmatrix}34&-5\\7&-1\end{smallmatrix}\right)^{3}$$7$
$35$$8$$1$$1$$ C_{1} $$C_{6}\times{}C_{12}$$\langle2,-4,1\rangle$$\left(\begin{smallmatrix}3&-1\\2&-1\end{smallmatrix}\right)^{12}$$\text{Y}$$13$
$2$$1$$ C_{1} $$C_{2}\times{}C_{6}\times{}C_{12}$$\langle1,-6,1\rangle$$\left(\begin{smallmatrix}6&-1\\1&0\end{smallmatrix}\right)^{6}$$7$
$3$$1$$ C_{1} $$C_{2}\times{}C_{6}\times{}C_{24}$$\langle7,-10,1\rangle$$\left(\begin{smallmatrix}37&-4\\28&-3\end{smallmatrix}\right)^{3}$$13$
$4$$1$$ C_{1} $$C_{2}\times{}C_{6}\times{}C_{24}$$\langle4,-12,1\rangle$$\left(\begin{smallmatrix}35&-3\\12&-1\end{smallmatrix}\right)^{3}$$7$
$6$$2$$C_{2}$$C_{2}\times{}C_{6}\times{}C_{24}$$\langle9,-18,1\rangle$$\left(\begin{smallmatrix}35&-2\\18&-1\end{smallmatrix}\right)^{3}$$7$
$\langle4,-20,7\rangle$$\left(\begin{smallmatrix}37&-14\\8&-3\end{smallmatrix}\right)^{3}$$10$
$12$$4$$C_{4}$$C_{2}\times{}C_{6}\times{}C_{24}$$\langle1,-34,1\rangle$$\left(\begin{smallmatrix}34&-1\\1&0\end{smallmatrix}\right)^{3}$$4$
$\langle7,-40,16\rangle$$\left(\begin{smallmatrix}37&-16\\7&-3\end{smallmatrix}\right)^{3}$$13$
$\langle4,-36,9\rangle$$\left(\begin{smallmatrix}35&-9\\4&-1\end{smallmatrix}\right)^{3}$$7$
$\langle16,-40,7\rangle$$\left(\begin{smallmatrix}37&-7\\16&-3\end{smallmatrix}\right)^{3}$$13$